General research interests: aquatic ecosystem ecology, biogeochemistry, hydrology, watershed science, sediment-water interactions, anaerobic processes, influence of anthropogenic contaminants on ecosystem function, data science, open science

Current project: Hydrologic and nutrient responses to extreme events in the Lake Champlain Basin

One core question of the Vermont EPSCoR Basin Resilience to Extreme Events (BREE) project is: What are the critical properties within the Lake Champlain Basin that drive hydrologic and nutrient responses to extreme events? And how do these events cascade through the soil-stream-lake continuum? To answer these questions, our team is using a heavily instrumented suite of watersheds and shallow bays in Lake Champlain. My current focus is on the processing and transport of nitrogen, phosphorus, and trace metals at two critical interfaces: 1) riparian soil corridors and streams and 2) river mouths and lakes.

Core collaborators: Erin Seybold, Carol Adair, Julia Perdrial, Andrew Schroth


Kincaid DW, Seybold EC, Adair EC, Bowden WB, Perdrial JN, Vaughan MCH, & Schroth AW. 2020. Land use and season influence event‐scale nitrate and soluble reactive phosphorus exports and export stoichiometry from headwater catchments. Water Resources Research 56: e2020WR027361 DOI [PDF]

Kincaid DW, Adair EC, Joung DJ, & Schroth AW. Ice cover and thaw events influence nitrogen partitioning and concentration in two shallow eutrophic lakes. In review at Limnology & Oceanography Letters

Dissertation research: The biogeochemical importance of flocculent organic sediment in shallow aquatic ecosystems

The sediment-water interface in shallow water bodies is thought to be a primary control on biogeochemical cycles, aquatic productivity, and nutrient movement to downstream waters. In humid, low relief regions like the Midwestern U.S., thick layers of flocculent organic sediments, or floc, persist in small water bodies like shallow lakes, wetlands, and even streams. Despite the very common occurrence of floc layers in a diversity of shallow waters, their biogeochemical importance has been little studied. My dissertation research, which is done in close collaboration with my advisor, Steve Hamilton, addresses the following overarching questions.

What are the environmental controls on floc quantity and quality?

Assessing the importance of floc layers in small water bodies first requires an understanding of their prevalence across the landscape. We surveyed* a wide variety of shallow waters in southwestern Michigan and are evaluating environmental controls on the prevalence and physicochemical characteristics of floc. It seems floc is more the rule than the exception in our region.

*Sampling floc is tricky business as this sediment type is easily disturbed. If you want advice about coring or pore water sampling techniques, feel free to contact me.

Why do thick accumulations of floc persist?

Investigating decomposition processes in floc layers is necessary to understand how these thick accumulations are maintained over time and how they contribute to carbon storage in freshwaters. In collaboration with Scott Tiegs (Oakland Univ.), we used a standardized cotton-strip assay to quantify decomposition potential, or the inherent capacity of floc accumulations to process organic matter, in floc layers in a variety of shallow water habitats.

Publication: Kincaid DW, Lara NAH, Tiegs SD, Hamilton SK. 2019. Decomposition in flocculent sediments of shallow freshwaters and its sensitivity to warming. Freshwater Science 38: 899–916. DOI [Request PDF]

What hydrologic processes drive solute exchanges between floc layers and overlying waters?

Relative to overlying waters, floc layers contain large pools of dissolved nutrients like phosphorus and nitrogen. Exchanges between these two compartments affect surface water quality. It’s reasonable to assume nutrients continuously move from the floc layer to more dilute overlying water via diffusion; however, we are curious whether there are times when advective exchanges (forced fluid flow) eclipse diffusion-dominated exchanges between floc layers and overlying waters. We are using heat exchange modeling to reveal the timing and types of hydrologic exchanges across the floc-water interface in shallow aquatic ecosystems. This work is done in collaboration with Mantha (Phani) Phanikumar (MSU), Martin Briggs (UGSG), and Jay Zarnetske (MSU).

Publication: Kincaid DW & Phanikumar MS (co-first authors), Briggs MA, Zarnetske JP, Hamilton SK. Buoyancy-induced flow drives exchange between flocculent sediment and overlying water in a small pond. In review at Water Resources Research

Do floc layers remove excess inorganic nitrogen from overlying waters?

Surface waters in agricultural landscapes are typically impaired by elevated levels of nitrate. These levels of nitrate can contribute to unsightly and sometimes harmful algal blooms. We are investigating whether floc layers perform an ecosystem service by removing nitrate from overlying waters. Using in situ nitrate uptake assays, we are comparing nitrate uptake rates in various floc settings.

Past Project: Effects of chronic exposure to pharmaceutical compounds on stream ecosystem functions

Pharmaceuticals and personal care products (PPCPs) are frequently detected in freshwater ecosystems around the world. Scientists are just now beginning to understand the effect these emerging contaminants have on aquatic ecosystems. We developed one of the first methods to assess the chronic effect of PPCPs on ecosystem processes in streams - pharmaceutical diffusing substrates (PhaDS). Collaborators: Emma Rosi (Cary Institute), Heather Bechtold (Lock Haven Univ.), Todd Royer (Indiana Univ.), & John Kelly (Loyola).

Publication: Rosi-Marshall EJ, Kincaid DW, Bechtold HA, Royer TV, Rojas M, Kelly JJ. 2013. Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms. Ecological Applications: 583-593. DOI [Request PDF]

Past Project: Persistence of road salt in watersheds

Road salts are not immediately flushed out of our watersheds after winter applications. And many reports indicate they are accumulating in our surface waters. My NSF-REU project examined the potential for soils and groundwater to serve as a reservoir and source of dissolved ions associated with road salt (i.e., chloride) long after the winter deicing period. Collaborator: Stuart Findlay (Cary Institute).

Publication: Kincaid DW, Findlay SEG. 2009. Sources of elevated chloride in local streams: groundwater and soils as potential reservoirs. Water, Air, & Soil Pollution: 335-342. DOI [Request PDF]